WASHINGTON
USING AGRICULTURE AND FORESTRY RESIDUES TO CREATE BIOENERGY AND BIOCHAR

WASHINGTON, DC—April 15, 2015, For Immediate Release – Research on using agriculture and forestry residues to create bioenergy and biochar will be the focus of a National C-FAR research and Extension seminar, presented at two different venues, on Monday, April 20, first at 10 am in 328A Russell Senate Office Building and then at a noon luncheon in 1302 Longworth House Office Building. The presenter is Deborah S. Page-Dumroese, Ph.D., a U.S. Forest Service Research Soil Scientist with the Rocky Mountain Research Station in Moscow, ID.

“Biochar may be able to play many roles for improving soil conditions, but the economics, technology, and science must be fully understood so the benefits of biochar can be applied appropriately,” Says Dr. Page-Dumroese.

“These presentations provide excellent examples of the value of federally funded food and agricultural research, Extension and education in producing the scientific outcomes and outreach needed to meet 21st century challenges and opportunities,” says Chuck Conner, President of the National Coalition for Food and Agricultural Research (National C-FAR).

Highlights: Woody biomass from western conifer forests or crop residues from farming operations are viewed as a potential source of feedstock for biofuel using thermochemical or biochemical conversion processes. Biochar, a byproduct from biofuel production, has been heralded as a soil amendment to revitalize degraded soils, improve carbon sequestration, increase agronomic production, and reduce greenhouse gas emissions. However, some barriers still exist in the technical and economical delivery of biofuel and biochar. Adding biochar to soil may produce immediate effects on soil nutrition, water retention, or microbial activities, but vary depending on soil type. Long-term impacts of biochar additions include soil formation, revitalizing nutrient impoverished soil, and building soil organic matter. Negative impacts from the use of crop residues for biofuel or biochar include altering raindrop impacts, organic matter incorporation, infiltration, and runoff. On National Forest lands there are numerous advantages to removing a portion of the net forest growth, including protection from wildﬁres, pests, and diseases, as well as acclimating to climate change. With the global population expanding and demand for goods and services from both crop and forest lands increasing, restoring soil quality to nonproductive or marginally productive soils could be the key to meeting future food and forest production needs.

The seminar is open to the public and the media.

The National Coalition for Food and Agricultural Research (National C-FAR) is a nonprofit, nonpartisan, consensus-based, and customer-led coalition that brings food, agriculture, nutrition, conservation, and natural resource stakeholders together with the food and agriculture research and Extension community, serving as a forum and a unified voice in support of sustaining and increasing public investment at the national level in food and agricultural research, Extension, and education. National C-FAR’s Hill Seminar Series, now in its tenth year, regularly presents leading-edge researchers working to provide answers to pressing issues confronting the public and Congress. The Hill Seminar Series helps demonstrate the value of public investment in food and agricultural research—investment that returns 45 percent per year on average, and $20 in economic benefit from every $1 investment in food and ag research.

Go to http://www.ncfar.org/Hill_Seminar_Series.asp for more information about the seminar series and past topics. Interviews with National C-FAR President Chuck Conner are available by request. For additional information, go to www.ncfar.org; or contact Tom Van Arsdall, Executive Director, at tom@vanarsdall.com or (703) 509-4746.