The agricultural food supply chain is represented by a complex array of transactions between input suppliers, farmers, processors, manufacturers and retailers to the final consumer. Historically, food products were viewed as commodities – apples were apples and pork chops were pork chops with little differentiation. The supply chain aggregated, distributed and transformed raw commodity inputs into food products and because of this commodity products were easily priced and transferred from stage to stage.

Over the past few decades, however, there have been increasing demands by consumers for an increasing array of attributes – these include production attributes such as cage free eggs, organic milk, locally raised foods and even demands for improved safety. The commonality of these attributes is that they are not observable at the time of purchase and so they require that the supply chain maintain the integrity of product identification throughout the chain.

This has implications for ownership and structure of the agricultural and food supply chain, ultimately affecting competition. For example, maintenance of product integrity through the supply chain is a primary incentive for vertical integration by firms. This allows improved coordination of the product in the supply chain because the product does not change hands and it is more easily identified through the chain. Further it reduces transactions costs of price discovery and transfer. However, this also has the potential to lead to market exclusion reducing open market competition as a key concern being addressed now by the USDA.

New information technologies embodied in new methods of measurement and identification (bar codes, radio frequency tags, embedded microchips, genetic markers), data warehouses and improved communications technology lead to the potential for improved transfer between stages of the supply chain. Improved communication can reduce the incentives for vertical integration, potentially leading to greater open market transactions. This overview will describe how traceability not only has implications for tracking products themselves (the direct physical benefit of traceability) but also how traceability can lead to innovation in market formation improving competition and impacting the structure of agricultural markets.
The research connections made with this topic provide an explicit demonstration of not only the direct impacts of federally funded competitive research but also the spillover effect of this research. The original research funded to analyze traceability lead to broader research to address the more fundamental issues of market performance and to leverage additional resources. This helped fund graduate students, developing the next generation of researchers. This research is also supported by federal base funding through the agricultural experiment stations which provides the base capacity upon which competitive grants are built. Both sources have been critical to research demonstrated in this presentation.

*Brian Buhr, Professor, Applied Economics, University of Minnesota
1994 Buford Ave.
St. Paul, MN 55108-6040
Phone: (612)625-0231 Email: bbuhr@umn.edu

Professor Buhr is sponsored by The Council on Food, Agricultural and Resource Economics (C-FARE)
900 Second Street, NE Suite 205
Washington, DC 20002
Phone: (202)408-8522 Website: www.cfare.org

Traceability research funded by the USDA, Rural Business Cooperative Service.

The U.S. agricultural sector has sustained a high rate of productivity growth, estimated a medium rate of return of $.45 on the dollar for investment in agricultural research. According to a recent report from USDA ERS¹, “economic analysis finds strong and consistent evidence that investment in agricultural research has yielded high returns per dollar spent. These returns include benefits not only to the farm sector but also to the food industry and consumers in the form of more abundant commodities at lower prices.”